Texture Classification by Wavelet Packet Signatures

نویسندگان

  • Andrew F. Laine
  • Jian Fan
چکیده

This correspondence introduces a new approach to characterize textures at multiple scales. The performance of wavelet packet spaces are measured in terms of sensitivity and selectivity for the classification of twenty-five natural textures. Both energy and entropy metrics were computed for each wavelet packet and incorporated into distinct scale space representations, where each wavelet packet (channel) reflected a specific scale and orientation sensitivity. Wavelet packet representations for twenty-five natural textures were classified without error by a simple two-layer network classifier. An analyzing function of large regularity ( 0 2 0 ) was shown to be slightly more efficient in representation and discrimination than a similar function with fewer vanishing moments (Ds) . In addition, energy representations computed from the standard wavelet decomposition alone (17 features) provided classification without error for the twenty-five textures included in our study. The reliability exhibited by texture signatures based on wavelet packets analysis suggest that the multiresolution properties of such transforms are beneficial for accomplishing segmentation, classification and subtle discrimination of texture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification

Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation and scale invariant texture classification using log-polar wavelet signatures. The rotation and scale invariant feature extraction for a given image involves applying a l...

متن کامل

Texture Analysis Using Multidimensional Histogram

Texture features have long been used in remote sensing applications for representing and retrieving regions similar to a query region. Various representations of texture have been proposed based on the power spectrum, grey-level cooccurrence matrices, wavelet features, Gabor features, etc. Analysis of several co-occurring pixel values may benefit texture description but is impeded by the expone...

متن کامل

Invariant content-based image retrieval by wavelet energy signatures

An effective rotation and scale invariant log-polar wavelet texture feature for image retrieval was proposed. The feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. The log-polar transform converts a given image into a rotation and scale invariant but rowshifted image, which is then passed to the adaptive row shift inv...

متن کامل

Statistical and Structural Wavelet Packet Features for Pit Pattern Classification in Zoom-Endoscopic Colon Images

We discuss features extracted from a wavelet packet decomposition for image classification. Statistical features computed from wavelet packet coefficients are compared to structural features which are derived from an image dependent wavelet packet decomposition subband structure. Primary application area is the classification of pit pattern structures in zoom-endoscopic colon imagery, while res...

متن کامل

Rotation and scale invariant texture classification

Texture classification is very important in image analysis. Content based image retrieval, inspection of surfaces, object recognition by texture, document segmentation are few examples where texture classification plays a major role. Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992